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Abstract One of the major groups of mosquito-borne diseases is Flaviviruses with prominent human pathogens, such as West 

Nile virus (WNV), dengue, Zika viruses. Nowadays, WNV is appearing more and more in several countries, thanks in part to 

climate change and other factors. WNV is endemic in parts of Europe, the Middle East, West Asia, Australia, Africa, and across 

the American continent. The primary vector for WNV is Culex pipiens, and some Aedes and Anopheles species may be 

competent vectors as well. Proper, accurate, and comprehensive vector control, surveillance, and laboratory diagnostics are 

important not only in WNV endemic countries but other places as well. Currently, most data on the presence of the virus comes 

from event-based surveillance. Here we demonstrate a protocol that can be used to detect the presence of certain viruses on-site 

within a short timeframe, permitting mosquito control activities for outbreak prevention. With the mobile laboratory we present, 

it is possible to detect the virus directly from mosquitoes within 3-4 hours, on the spot. This method provides an opportunity to 

process freshly caught mosquitoes in the trunk of a car under variable field conditions. This process contributes greatly to the 

increasing use of targeted, environmentally friendly, biological mosquito control but most importantly it facilitates the fine-

tuning of outbreak prevention mosquito control activities. 
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INTRODUCTION 
West Nile virus (WNV) belongs to the genus Flaviviruses, it is one of the most common viruses transmitted by 

mosquitoes in Europe. In nature, the virus is maintained in mosquito populations through vertical transmission (adults 

to eggs) and circulates between mosquitoes and birds which serve as natural reservoir hosts. The virus occasionally 

infects humans and other mammals, like horses, which serve as dead-end hosts in the transmission (Lustig et al., 2018; 

Zana et al., 2020). Approximately 80% of people who are infected will not show any symptoms, however in some rare 

cases, the virus can cause serious or fatal neurological disease in humans. The primary vectors of WNV are species 

belonging to the mosquito genus Culex, in Europe, mainly Culex pipiens (Linnaeus, 1785) is responsible for WNV 

transmission. However, other species such as the exotic invader Aedes albopictus (Skuse, 1894) and members of 

Anopheles genus (Meigen, 1818) may also be a competent vector for WNV transmission (Fortuna et al., 2015; 

Kemenesi et al., 2014; Mancini et al., 2017; Maquart et al., 2016; Nir et al., 1968; Shocket et al., 2020) therefore 

investigation of a broader scale of mosquito species is continuously needed. Unfortunately, there is no human vaccine 

against WNV, thus surveillance of the virus and the maintenance of mosquito populations is particularly important. 

More and more monitoring programs are being set up throughout Europe but most of the data still comes from event-

based (human cases) surveillance (Bakonyi and Haussing, 2020; Young et al., 2021; Gossner et al., 2017) . However, it 

is possible to detect the virus directly from mosquitoes before human cases occur, these laboratory processes take a 
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long time from the sample field collection to the molecular identification of the virus. This turnover time makes it 

difficult to integrate surveillance data into mosquito control activities. For all these reasons, our primary goal was to 

develop a mobile-laboratory protocol that allows the in-situ detection of the virus from mosquitoes. This method can 

greatly reduce the time of action, significantly supporting integrated mosquito management efforts, and raises the 

opportunity to suppress the targeted mosquito population to reduce upcoming human or animal case numbers, giving a 

direct mode of action before outbreaks flourish. 

 

MATERIALS AND METHODS 
Sample collection 

Mosquito trapping was carried out in Valencia and Andalusia Regions, Spain, 2021. To test the applicability of our 

protocol we visited 23 previously selected sites based on reported WNV cases in the ongoing season (humans and 

horses) and based on the high abundance of mosquitoes measured in previous years. Mosquito collection at these sites 

was performed using standard trapping methods and trap types, namely BG-Sentinel (combined with lure and CO2), 

BG-Mosquitaire (with lure), CDC-Light trap (with yeast as CO2 attractant) (Figure 1). After collection from traps 

mosquitoes were euthanized by freezing using portable cool boxes, then they were visually separated by sex and 

genera (Anopheles, Aedes, or Culex) and female mosquitoes were grouped by sampling site and date of collection for 

WNV testing in separate pools with a max of 20 individuals per tube. 

 

 
 

Figure 1. Mosquito sample collection with CDC Light trap    

   (on the left) and BG-Sentinel (on the right). 

Virus screening 

For the extraction of viral nucleic acid, samples were first homogenized manually (quartz sand and 500µl 

PBS buffer were added to each pool) using plastic sticks. Total RNA was extracted using Beckman Coulter 

RNAdvance Viral XP; RNAdvance Viral XP 1.5 mL Tube Protocol (Beckman Coulter, Inc. CA, USA), 

following the manufacturer’s protocol. Compared to generally used RNA extraction protocols, this kit does 

not require any centrifugation steps, contains only a few types of reagents, and is suitable for field use 

supplemented with a magnetic rack (Thermo Fisher Scientific, MagJET Separation Rack) (Figure 2). 
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Figure 2. WNV detection protocol from mosquito specimens under field conditions. 

 

Samples were tested for WNV by real-time (RT)-PCR with previously publishes primers and probes. The 

RT-PCR was performed on MyGo Mini S Real-Time PCR Instrument (IT-IS Life Science Ltd.) using the 

Brilliant III Ultra-Fast QPCR Master Mix (Agilent Technologies, CA, USA). The diagnostic test was 

designed to detect both the genetic lineages 1 and 2 of WNV, using the primers WN10533-10552 (AAG 

TTG AGT AGA CGG TGC TG) and WN10625-10606 (AGA CGG TTC TGA GGG CTT AC) targeting a 

92 bp region in the 3´noncoding region (10,533–10,625). The probe WN10560-10579 (CTC AAC CCC 

AGG AGG ACT GG) was labeled with FAM. The total RT-PCR master mix was 15 µL containing primers 

at a concentration 1µM and probe at a concentration of 0,25 µM. The thermal cycling program consisted of 

10 min at 50 ℃ for reverse transcription, 3 min at 95℃ for denaturation, and 45 cycles of 10 sec at 95℃ and 

25 sec at 60℃ for amplification (Tang et al., 2006). The PCR program took approximately 2 hours. The full 

protocol for in-situ WNV detection, from emptying the traps to PCR results, takes about 3-4 hours with the 

above-mentioned conditions, depending on the number of investigated mosquitoes. After PCR results 

destructive data analysis was performed. 

 

RESULTS AND DISCUSSION 

During our field visit altogether 353 mosquito individuals belonging to 7 species were collected and tested. 

Cx. pipiens (n=207), Culex perexiguus (n=13), Ae. albopictus (n=39), Aedes caspius (n=32), Aedes detritus 

(n=30), Anopheles atroparvus. (n=28), Culiseta longiareolata (n=4). A total of 54 pools were combined and 

processed for WNV testing and 2 pools were positive, which combined 5 mosquitoes. (2 Cx. pipiens and 3 

An. atroparvus collected from Andalusia, Coria village). WNV cases have been reported in Andalusia during 

the last couple of years, indicating this region as a WNV hot-spot. In another area of our trapping,  we found 

no evidence for active WNV circulation. Although members of the genus Anopheles are not primary vectors 

of WNV, several literature data support our result (Kemenesi et al., 2014, Mancini et al., 2017, Maquart et 

al., 2016, Nir et al., 1968). To date, several studies have described the possibility of detecting WNV rapidly, 

but all of them required laboratory conditions. These have helped virus surveillance by detecting the virus 

from human samples or by processing mosquitoes that have been collected over several years. (González-

Reiche et al., 2010; Lanciotti et al., 2000; Szentpáli-Gavallér et al., 2014) . To our best knowledge this is the 

first in-situ surveillance system for WNV, which can directly aid targeted mosquito control efforts and 

outbreak preparadness. 
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CONCLUSIONS 

In the present paper, we introduce a mobile lab protocol that allows us to detect mosquito-borne viruses of 

human health significance from mosquitoes on the spot, in a very short time, before there were human 

infection cases in the given area. This method can be integrated into most of the currently ongoing vector-

borne virus surveillance activities as well as the biggest advantage, it can be complemented with rapid-

response in mosquito control actions and can be optimized for other viruses transmitted by mosquitoes. 
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