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INTRODUCTION
Aedes fluviatilis (Lutz, 1904) is a neotropical mosquito species abundantly found in urban areas (Forattini, 
2002; WRBU, 2015). This species can thrive in urban environments and it is found throughout the city 
of São Paulo, where it represented around 10% of all mosquito specimens collected in previous studies 
(Ceretti-Júnior et al., 2015; Medeiros-Sousa et al., 2013). Ae. fluviatilis is highly anthropophilic and it is 
a potential vector of yellow fever virus (Davis and Shannon, 1931; de Carvalho et al., 2014), Plasmodium 
gallinaceum and Dirofilaria immitis (Camargo et al., 1983; Kasai, 1979; Vezzani et al., 2006).
	 The success of some species of mosquitoes in inhabiting urban environments depends on three 
main factors: the availability of breeding sites, blood-meal sources and climate variations. These factors 
can modulate the abundance of mosquito populations in urban areas (Brown et al., 2011; Chaves and 
Koenraadt, 2010; Descloux et al., 2012; Edman, 1988). Therefore, a better knowledge of the genetic 
structure of urban mosquitoes can lead to a better understanding of how Ae. fluviatilis populations are 
modulated by selective pressures in the urban environment. Microsatellites have been used in genetic 
population studies since they are not subjected to selective pressures, indeed it can be a very useful tool for 
population genetic studies of mosquitoes on a macrogeographic (Brown et al., 2011; Fonseca et al., 2006; 
Wilke et al., 2014) and microgeographic (Olanratmanee et al., 2013; Piccinali and Gürtler, 2015) scale.
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Considering the above facts, this study used microsatellite markers to investigate how Ae. 
fluviatilis populations are genetically structured in the city of São Paulo, Brazil and whether urbanization 
processes can modulate the genetic structure of this culicid.

MATERIAL AND METHODS
Ae. fluviatilis mosquitoes were collected from nine urban parks (Burle Marx, Ibirapuera, Piqueri, 
Previdência, Santo Dias, Shangrilá, Alfredo Volpi, Chico Mendes and Carmo) in the city of São Paulo, 
Brazil from 2011 to 2013. Mosquitoes were collected with portable, battery-powered aspirators and 
CDC CO2-baited light traps. DNAs were extracted using the DNEasy Blood and Tissue Kit (Qiagen, 
Hilden, Germany) following the manufacturer’s protocol. PCR reactions, visualization of fragments, 
dilution of PCR products, sequencing and fragment analysis were carried out as in Multini et al. (2015). 
The modified dendrogram displaying the Cavalli-Sforza and Edwards chord distance was constructed 
using Statistica 7.0 (StatSoft, 2004) by Multini et al. (2016). AMOVA was calculated using the software 
Arlequin (v3.5) (Excoffier et al., 2005). The amplified alleles were subjected to Bayesian model-based 
clustering analysis using Structure (v2.3.3) (Pritchard et al., 2007).

RESULTS AND DISCUSSION
The dendrogram displaying the Cavalli-Sforza and Edwards genetic distance in Figure 1, clearly showed 
the studied populations separated in 2 main clusters, one comprising the populations Burle Marx, Chico 
Mendes, Previdência, Shangrilá, Carmo, Santo Dias and Alfredo Volpi (Group 1) and the other comprising 
the populations Ibirapuera and Piqueri (Group 2), indicating some degree of differentiation between groups.

 
 

The AMOVA results showed that differences within population account for 98% of the genetic 
variation, meaning that variations within population were higher than between population. The Bayesian 
analysis displayed in Figure 2 showed that although the populations were partially segregated, the 
differences between them are subtle, indicating the presence of high levels of gene flow, which is 
probably responsible for the low genetic structure found in Ae. fluviatilis populations.
	 The urbanization processes present in Brazil are characterized by rapid and unplanned growth 
of the cities, resulting in the lack of basic sanitation, unsanitary houses, polluted rivers and untreated 
sewage. These factors have been resulting in the increasing in abundance of mosquitoes’ species that are 
well adapted to man-made alteration. These features are acting as an obstacle in vector control strategies 
(Taipe-Lagos and Natal, 2003; Li et al., 2014).
	 The main findings of this study suggest that Ae. fluviatilis populations are segregated in two 
main groups. Since Group 2 is composed by the two populations collected in the most pressed by 
urbanization areas, it may indicate how man-made alteration in the environments might be modulating 
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Figure 1. Genetic-distance 
dendrogram for Aedes fluviatilis, 
modified from Multini et al. 
(2016).
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Ae. fluviatilis populations. 

Figure 2. Bayesian analysis of structure for the two groups of Aedes fluviatilis populations showing 
the subdivision of individuals k = 2. Each of the 270 individuals is represented by a vertical line 
divided into different colored segments. The length of each segment represents the probability of the 
individual belonging to the genetic cluster represented by that color.

It was previously found by Multini et al. (2016) that this culicid undergone a population expansion, 
a common trend among mosquito species that can thrive in urbanized environments (Michel, 2006; 
Mirabello and Conn, 2006). The population expansion hypothesis can be also corroborated by the low 
genetic structure and high gene flow found in the Bayesian analysis. Moreover, the AMOVA results 
indicate that the low genetic variation between population can be a result of a genetic homogenization 
of these populations (LaDeau et al., 2015). 

CONCLUSION
The structure patterns found for Ae. fluviatilis populations are probably correlated with the 
urbanization of the city of São Paulo, fitting the hypothesis that the transformation of rural areas into 
urbanized areas might be modulating Ae. fluviatilis population dynamics.
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